Drupal

Plotting your load test with JMeter

Learn how to use the JMeter load testing tool. It comes with a built-in graph listener, which allows you to watch JMeter do, well... something. While this gives a basic view of response time and throughput, it doesn't show failures, nor how the server responds as load increases. And let's face it, it's just plain ugly. Enter Matplotlib, a beautiful (though complex) plotting tool written in Python.


Filed under:

If you've ever used JMeter, you know it's an awesome load testing tool. It also comes with a built-in graph listener, which allows you to watch JMeter do, well... something.

JMeter graph

While this gives a basic view of response time and throughput, it doesn't show failures, nor how the server responds as load increases. And let's face it, it's just plain ugly.

Enter Matplotlib, a beautiful (though complex) plotting tool written in Python.

Box plots for response time are shown in green, throughput is in blue, and 50x errors are plotted as red X's. The script assumes a few things:

  • You have a series of CSV files sampled with different thread counts.
  • The input files are named N-blah-blah.csv, where N is the number of threads. The file names are taken as command-line arguments.
  • Your CSV report contains the follow fields at a minimum: label, elapsed, and timeStamp. The results are grouped by label (a name you assign to each JMeter sampler), so each sampler produces a separate plot.
  • And of course, that you have python and Matplotlib. If you are on OS X, the easiest way to install it is via MacPorts.

Stay tuned for the next article on the JMX file.

Sample plots

Click an image for a larger view.

Source code

#!/opt/local/bin/python2.6
# No copyright - https://creativecommons.org/publicdomain/zero/1.0/
 
from pylab import *
import numpy as na
import matplotlib.font_manager
import csv
import sys
 
elapsed = {}
timestamps = {}
starttimes = {}
errors = {}
 
# Parse the CSV files
for file in sys.argv[1:]:
  threads = int(file.split('-')[0])
  for row in csv.DictReader(open(file)):
    if (not row['label'] in elapsed):
      elapsed[row['label']] = {}
      timestamps[row['label']] = {}
      starttimes[row['label']] = {}
      errors[row['label']] = {}
    if (not threads in elapsed[row['label']]):
      elapsed[row['label']][threads] = []
      timestamps[row['label']][threads] = []
      starttimes[row['label']][threads] = []
      errors[row['label']][threads] = []
    elapsed[row['label']][threads].append(int(row['elapsed']))
    timestamps[row['label']][threads].append(int(row['timeStamp']))
    starttimes[row['label']][threads].append(int(row['timeStamp']) - int(row['elapsed']))
    if (row['success'] != 'true'):
      errors[row['label']][threads].append(int(row['elapsed']))
 
# Draw a separate figure for each label found in the results.
for label in elapsed:
  # Transform the lists for plotting
  plot_data = []
  throughput_data = [None]
  error_x = []
  error_y = []
  plot_labels = []
  column = 1
  for thread_count in sort(elapsed[label].keys()):
    plot_data.append(elapsed[label][thread_count])
    plot_labels.append(thread_count)
    test_start = min(starttimes[label][thread_count])
    test_end = max(timestamps[label][thread_count])
    test_length = (test_end - test_start) / 1000
    num_requests = len(timestamps[label][thread_count]) - len(errors[label][thread_count])
    if (test_length > 0):
      throughput_data.append(num_requests / float(test_length))
    else:
      throughput_data.append(0)
    for error in errors[label][thread_count]:
      error_x.append(column)
      error_y.append(error)
    column += 1
 
 
  # Start a new figure
  fig = figure(figsize=(9, 6))
 
  # Pick some colors
  palegreen = matplotlib.colors.colorConverter.to_rgb('#8CFF6F')
  paleblue = matplotlib.colors.colorConverter.to_rgb('#708DFF')
 
  # Plot response time
  ax1 = fig.add_subplot(111)
  ax1.set_yscale('log')
  bp = boxplot(plot_data, notch=0, sym='+', vert=1, whis=1.5)
 
  # Tweak colors on the boxplot
  plt.setp(bp['boxes'], color='g')
  plt.setp(bp['whiskers'], color='g')
  plt.setp(bp['medians'], color='black')
  plt.setp(bp['fliers'], color=palegreen, marker='+')
 
  # Now fill the boxes with desired colors
  numBoxes = len(plot_data)
  medians = range(numBoxes)
  for i in range(numBoxes):
    box = bp['boxes'][i]
    boxX = []
    boxY = []
    for j in range(5):
      boxX.append(box.get_xdata()[j])
      boxY.append(box.get_ydata()[j])
    boxCoords = zip(boxX,boxY)
    boxPolygon = Polygon(boxCoords, facecolor=palegreen)
    ax1.add_patch(boxPolygon)
 
  # Plot the errors
  if (len(error_x) > 0):
    ax1.scatter(error_x, error_y, color='r', marker='x', zorder=3)
 
  # Plot throughput
  ax2 = ax1.twinx()
  ax2.plot(throughput_data, 'o-', color=paleblue, linewidth=2, markersize=8)
 
  # Label the axis
  ax1.set_title(label)
  ax1.set_xlabel('Number of concurrent requests')
  ax2.set_ylabel('Requests per second')
  ax1.set_ylabel('Milliseconds')
  ax1.set_xticks(range(1, len(plot_labels) + 1, 2))
  ax1.set_xticklabels(plot_labels[0::2])
  fig.subplots_adjust(top=0.9, bottom=0.15, right=0.85, left=0.15)
 
  # Turn off scientific notation for Y axis
  ax1.yaxis.set_major_formatter(ScalarFormatter(False))
 
  # Set the lower y limit to the match the first column
  ax1.set_ylim(ymin=bp['boxes'][0].get_ydata()[0])
 
  # Draw some tick lines
  ax1.yaxis.grid(True, linestyle='-', which='major', color='grey')
  ax1.yaxis.grid(True, linestyle='-', which='minor', color='lightgrey')
  # Hide these grid behind plot objects
  ax1.set_axisbelow(True)
 
  # Add a legend
  line1 = Line2D([], [], marker='s', color=palegreen, markersize=10, linewidth=0)
  line2 = Line2D([], [], marker='o', color=paleblue, markersize=8, linewidth=2)
  line3 = Line2D([], [], marker='x', color='r', linewidth=0, markeredgewidth=2)
  prop = matplotlib.font_manager.FontProperties(size='small')
  figlegend((line1, line2, line3), ('Response Time', 'Throughput', 'Failures (50x)'),
    'lower center', prop=prop, ncol=3)
 
  # Write the PNG file
  savefig(label)

Similar posts

Get notified on new marketing insights

Be the first to know about new B2B SaaS Marketing insights to build or refine your marketing function with the tools and knowledge of today’s industry.